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and Temporal Dilated Networks
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1. Abstract
Dysregulation of protein phosphorylation during cellular development and signal transduction is
associated with a myriad of human cancers, Parkinson’s Disease, and Alzheimer’s Disease.
Understanding the exact amino acid binding sites is critical for medical and pharmacological
applications but current experimental and computational methods are time-consuming or
imprecise.

I developed a novel approach to identifying phosphosites using peptide tandem fragmentation
mass spectra, which is more applicable for drug design compared to the current method of
sequence input. I created a temporal convolutional neural network (TCN) to identify the exact
phosphorylated amino acid from a given spectrum. I processed the mass spectra data to create a
two-vector representation for efficient analysis. My model uses a unique architecture that
promotes flexibility and interpretability with considerations for long-range associations between
spectral peaks critical for phosphosite identification. I accounted for neutral losses, a common
phenomenon in proteomics mass spectrometry, through the independent identification of unique
spectral patterns. Instead of requiring existing input features that could increase bias or decrease
the identification of rare or new phosphosites, my model identifies its own patterns.

My model achieved an average accuracy of 95% compared to the accuracies (76 - 78%) of
sequence-based models. Future work includes developing my model to predict neutral losses. My
novel approach provides a critical step to the biological understanding of phosphorylation events
and the effective development of medical and pharmacological tools to correct biochemical
pathways for targeted treatments that reduce risk and discomfort for patients.

2. Introduction
2.1. Post-Translational Modifications (PTMs)
PTMs are chemical changes made to proteins through the addition or removal of functional
groups, other proteins, lipids, or sugars to or from amino acid side chains [1]. These events
regulate protein activity at all stages of the protein lifecycle, from directly after translation to
activating catalytic activity to eventual degradation [2]. With an approximate human genome size
of 20,000-25,000 genes, PTMs play a critical role in proteomic diversity with the proteome
estimated to include over 1 million individual proteins [3]. Figure 1 depicts the increased
complexity of the proteome compared to the genome.
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Figure 1: A visual representation of the effect of PTMs on proteome diversity demonstrates how
the transcriptome with approximately 100,000 transcripts produces proteins modified to produce
the full human proteome [2].

2.2. Phosphorylation
Phosphorylation is one of the most important PTMs and plays a critical role in regulating the cell
cycle, growth, apoptosis, and signal transduction pathways [4]. Between 30 and 40% of
eukaryotic proteins undergo phosphorylation at some point, and approximately 230,000 and
156,000 individual phosphosites exist in the human and mouse proteomes respectively [5].
Phosphorylation is also present in prokaryotes with approximately 5-10% of proteins undergoing
modification [6]. The reversible nature of phosphorylation, where a kinase phosphorylates a
specific amino acid side chain and a phosphatase hydrolyzes the phosphate group to remove it,
enables cell regulation with an “on/off” switch corresponding to phosphorylation or
dephosphorylation for a variety of signaling pathways [7]. Simultaneously, the reversibility of
phosphorylation poses a unique challenge in identifying exact phosphosites as any given sample
may contain proteins with amino acids that function as phosphosites but are not currently
phosphorylated [8].

Phosphosite identification is further complicated by the variety of proteinogenic amino acids that
can undergo phosphorylation. In eukaryotes, phosphorylation is primarily limited to serine (S),
threonine (T), tyrosine (Y), and histidine (H). At the same time, prokaryotic phosphorylation can
also occur on arginine (R), aspartic acid (D), or cysteine (C) [9]. The varying bonds formed
during phosphorylation between the amino acid and phosphate can change the function of the
phosphosite within the protein and its greater regulatory role. For example, S, T, and Y form
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relatively low-energy ester bonds when phosphorylated compared to higher-energy
phosphoramidates (P–N) bond from H and R. Phosphorylated aspartic acid forms a mixed
anhydride or acyl phosphate, and cysteine forms a phosphorothiolate (P–S) bond [10]. The
phosphorylation of tyrosine is in Figure 2 where the nucleophilic group of tyrosine attacks the
terminal (𝛾) phosphate group of ATP [11].

Figure 2: The phosphorylation of tyrosine where a kinase serves as the enzymatic mediator.

The deregulation of phosphorylation has been associated with the onset of multiple diseases
including cancer, Alzheimer’s Disease, Parkinson’s Disease, and other degenerative disorders
[12]. Potential treatments for such diseases lie in the ability for precise identification of a
phosphosite for pharmacological developments such as kinase or phosphatase inhibitors for
specific proteins [13]. The frequency of phosphorylation on many different signaling pathways
leads to the potential of a relationship between the onset of disease and abnormal
phosphorylation. Sample deregulation for a variety of disease pathways is in Figure 3.
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Figure 3: Simplified pathways of protein phosphorylation events that lead to various diseases.
Kinases are in blue, primary proteins are in green, critical regulatory proteins are in orange, and
diseases caused by the deregulation of the proteins are in pink. PI3 kinases phosphorylate CHK1
and CHK2. These kinases phosphorylate p53 which can enable cancer when mutated. TTBK
phosphorylates tau and TDP-43 which may lead to Alzheimer’s Disease and ALS respectively.
LLRK2 phosphorylates four Rab proteins which lead to Parkinson’s Disease.

2.3. Mass Spectrometry (MS) Proteomics
The important identification and analysis of phosphorylation sites have now become mostly
fulfilled by MS implementations. MS-based proteomics was first established by Ficarro et al. in
2002 and has since become one of the most utilized approaches for analyzing proteins at
whole-proteome scales in biological fluids or tissues [14,15]. However, typical MS that only
produces a mass-to-charge ratio (m/z) is not always specific enough to identify complex
biological molecules. Tandem mass spectrometry (MS/MS) resolves this issue by performing
two rounds of analysis: first with the intact analyte and then after fragmenting the analyte with
inert gas molecule collision analyzing the fragments [16]. MS/MS, therefore, provides insight
into a protein’s substructures, which is crucial for the identification of protein phosphorylation
sites [17].

A common phenomenon during the fragmentation process of MS/MS is a neutral loss which
poses a particular challenge to the study of phosphorylation. During high-energy fragmentation,
the phosphate group may dissociate from the peptide as a neutral species [18]. The peptide, now
dephosphorylated, may not produce the necessary intense fragment ions necessary for
phosphopeptide identification. While methods have been developed so that general
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phosphopeptide identification is not hindered by neutral loss, confident phosphosite localization
is still significantly impacted by the phenomenon [19].

The amount of publicly available MS-based proteomic data has increased exponentially recently
due to the large pools of fragmentation spectra, which represent partial protein sequence
information [20]. Each spectrum includes characteristic peak patterns based on the specific
fragmentation process and peptide [21]. However, spectra are not easily identified because of
PTMs or mutations. A variety of computational methods have been implemented to address this
issue, most relying on an “open search” strategy that attempts to match a spectrum to an already
known sample in a database [22]. The typical workflows for MS-based proteomic analysis are
summarized in Figure 4.

Figure 4 [17]: A high-level outline of typical proteomics analysis. Proteins are first extracted
from a biological tissue or other samples of interest and are then digested into peptides, typically
by trypsin. The peptides created normally have basic terminal residues to promote ionization.
Two layers of mass analysis following MS/MS. The first MS is completed on the whole peptide
and the second MS is completed on characteristic fragments that were created in the collision
cell. The data are then typically analyzed via two methods: de novo search algorithms or
database searching [17].
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Currently, computational analysis of MS/MS spectra focuses on a derived amino acid sequence
[1]. De novo search algorithms and database searching tools, the two most common spectra
analytics tools, focus on generating amino acid sequences from the spectra or searching datasets
with preexisting matches between a specific spectrum and sequence respectively [23, 24]. While
identifying the sequence of a particular protein is critical to understanding aspects of its structure
and function, for phosphosite localization an amino acid sequence provides less specific
information such as individual bonds compared to raw spectra. Furthermore, a complete amino
acid sequence for a given peptide is necessary for full phosphosite identification since many
proteins have multiple phosphosites [15].

Within MS-based proteomics, there have been primarily two avenues of machine learning
applications: fragment intensity and de novo sequencing (the novel generation of a sequence
without a reference sequence for alignment). However, both of these methods are focused on or
require a peptide sequence as an input, output, or intermediary rather than a spectrum alone.
Recurrent neural networks have recently been utilized to predict fragment intensities, or strength
of specific ion peaks, in pDeep and Prosit [25, 26], and implemented for de novo sequencing in
DeepNovo and PointNovo [27, 28, 29]. A significant limitation of these approaches, especially
with potential application to phosphosite localization, is the fixed and untrainable nature of the
fragmentation patterns characterized by ion types and amino acids; the models are unable to
independently characterize spectra patterns [30]. In 2022, Altenburg et. al produced the model
AHLF that can independently recognize relevant fragmentation patterns without ever receiving
them during the training process which resolves the limitation described above [31].

2.4. Phosphosite Localization Methods
The detection of phosphopeptides has been more rigorously studied both experimentally and
computationally compared to the localization of phosphosites. In MS-based and broader
proteomics, phosphopeptide detection presents a comparatively easier task with less specificity,
precision, and flexibility necessary for detection. The varied potential amino acids that can serve
as phosphosites, many with different binding patterns, the reversible nature of phosphorylation,
and the phenomenon of neutral loss all pose particularly difficult challenges to phosphosite
identification, especially from an MS-based approach.

The few current phosphosite localization methods are generally ambiguous and at times
contradictory [32]. Upon writing, there are no known existing methods for phosphosite
localization that are derived directly from spectra. Instead, most methods such as MusiteDeep
and DeepPhos rely on small 20-amino acid long sequences for phosphosite identification [33,
34]. The small inputs reduce the accuracy of the models since there are not enough
phosphosite-specific features, potentially increase model bias by requiring detailed arbitrary
feature selection, and create limited whole proteome applicability which is critical for medical
and pharmacological applications [35]. Feature selection presents a particularly difficult problem
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in the context of phosphorylation. Phosphorylation events are still not well understood so picking
all necessary features for adequate localization of unique, or potentially new, phosphosites is a
difficult task [36].

An MS-based approach would potentially resolve some of these issues. Spectra for entire
peptides provide significantly increased detail compared to small sequences and do not require
the second step of acquiring a sequence, which is especially helpful for lab-based settings where
peptides from specific tissues are used.

2.5. Temporal Convolutional Networks (TCNs)
To adequately approach phosphosite localization from MS/MS using a machine learning method,
a unique model with the ability for long-range associations is critical. Traditional convolutional
neural networks generally only make accurate predictions from close kernels.

Lea et al. established TCNs in 2016 for video-based action segmentation [37]. The framework
replaces typical two-model architectures of recurrent neural networks such as long short-term
memories (LSTMs) and gated recurrent units (GRUs) that are both comparatively inefficient and
unable to learn from long-range associations (a necessity for analyzing spectra given the distance
between peaks) [38]. TCNs are deep neural networks consisting of dilated convolutions (layers
that increase the size of the kernel (input) by inserting holes within the data) and can learn
long-range associations. Another critical feature of TCNs is the ability of the architecture to take
a sequence of any length and map it to an identical length output [39]. TCNs provide a unique
approach to phosphosite localization via MS by accommodating the long-range nature of spectra.
A TCN enables ad-hoc learning, a type of deep learning that emphasizes pattern recognition
without specific built-in features that provide a model with such patterns beforehand. A
generalized TCN architecture is in Figure 5.
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Figure 5 [37]: The traditional architecture of a TCN. (a) A dilated causal convolution where the
dilation factors increase through the layers. (b) The TCN residual block implements two layers
of dilated causal convolution. Each layer has sublayers with the rectified linear unit (ReLU)
applied to prevent exponential growth, weight normalization layers that ensure convergence and
speed up training, and dropout layers which temporarily remove unused hidden nodes for
efficiency. (c) Residual connection within a TCN allows the model to skip some layers to
provide more pathways for data.

2.6. Approach
This research presents a novel approach to the detection and localization of phosphosites using
tandem MS and a TCN architecture. By using input data that is widely publicly available and
allows for the high specificity necessary for localization and a machine learning method that can
perform long-range associations on spectra without detailed feature input, my method provides
an efficient and accurate approach to phosphosite localization.

3. Methods
3.1. Dataset
Datasets of the phosphoproteomes of humans (Homo sapiens), common liverwort (Marchantia
polymorpha), thale cress (Arabidopsis thaliana), and the house mouse (Mus musculus) from the
Proteomics Identifications (PRIDE) Archive [40] and the Japan Proteome Standard (jPOST)
Repository [41] were utilized for both training and testing of the model. These species’ spectra
were both the most robust from the archive given their status as model organisms and provided a
variety of eukaryotes within the overall data. Specifically, the repositories PXD012174 [42],
JPST000685 [43], JPST000703 [44], PXD013868 [45], PXD014865 [46], PXD015050 [47], and
PXD000138 [48] were used for both their robustness and the efficient comparison of results
between the proposed model and other non-machine learning MS-based phosphosite localization
methods such as MusiteDeep [33] and DeepPhos [34]. I used PXD012174 for the training dataset
since it is roughly balanced between phosphorylated and unphosphorylated spectra which
provided adequate training of phosphosite localization from the large fragments. The other
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datasets were used for testing and comparison to other methods. I initially trained and tested my
model exclusively on eukaryotic samples for maximum pharmacological and medical
applicability. A sample of the raw data is in Table 5 of Appendix A.

3.2. Two-Vector Representation of Spectra
Due to the high accuracy and resolution of MS measurements of m/z, the potential number of
features in a dense feature vector would be too large for efficient training. All the spectra were in
mgf (Mascot generic format) which preserved the high resolution. With the raw spectra, a simple
conversion of peaks to features would create over 100,000 features for the model to analyze
which would dramatically slow run time. I used a two-vector representation of the spectra
(separating intensity and m/z) to maintain accuracy but reduce the total number of features. This
representation exploits the sparsity created by specific m/z with non-zero intensities using
Equation 1, where i is an integer that describes a specific index within a spectra segment and s is
the size of the segment, to calculate the m/z remainder: m/z’ for each peak (a point of m/z and
intensity) [31].

Equation 1𝑚/𝑧 =  𝑖 · 𝑠 + 𝑚/𝑧'

The representation allows convolutional layers to be applied to the spectra and reduces memory
consumption without lessening resolution. The workflow for separating the files is in Figure 6
and a portion of the code implementation is in Dataset.py in Appendix A.

Figure 6: A flowchart demonstrating the preparation of the raw data values. MATLAB msviewer
from the bioinformatics toolbox was used to evaluate unedited spectra. I then created a python
script to separate the raw spectra into one plot that included reduced segment indexes which
were confirmed to not lose peaks while reducing feature size to 3500. The lower m/z remainder
plot would allow the true m/z values to be reacquired while saving feature space.
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3.3. Model Architecture
To construct my model, I used Python 3.7, Tensorflow 2.0, Pyteomics, and Numpy. I modified
the base TCN architecture to accommodate the unique specifications of spectra analysis,
especially for phosphosite identification. The full model architecture (Figure 7) can make the
critical long-range associations between peaks that are necessary to identify a phosphosite and
accommodate the unique two-vector representation. These long-range associations were enabled
by the artificially increased receptive field size.

Figure 7: The full model architecture. The two-vector spectra are represented with both intensity
and m/z remainder peaks. The long-range association capability of the model is demonstrated
through the green peaks. General convolution ability is demonstrated through black peaks and
the orange peaks demonstrate the ability of the model to skip layers to maximize efficiency. The
figure condenses the layers where the representative size of the figure is accompanied by the true
size of the model in parenthesis.

Each layer within the full model architecture is composed of a TCN-based dilation convolution
block that promotes long-range associations. Each input feature is dilated to a larger size while
undergoing convolution (Figure 8). These dilations are followed by a simple base convolution to
create an input for the corresponding layer paired with a ReLU activation.
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Figure 8: The dilation block of each layer of the full architecture with an artificially increasing
dilation with a feature size of 128 tensor. The final output from the block produced a 64 tensor,
with each layer systematically reducing the size of the tensor until pooling to produce
localization predictions.

While the dilation blocks were critical for long-range associations, not all phosphosites required
computationally expensive dilations. Therefore, I also implemented more simple general
convolutions which implement basic pattern recognition among spectra. I also utilized skip
connections, where layers that produce outputs with a strong enough accuracy could skip dilation
layers to improve runtime. These skip connections also enhanced nonlinearity within my model
because nonsequential layers could be directly connected. The skip connection process is in
Figure 9.

Figure 9: The potential skip connections that were possible within the model. The blue arrows
represent the typical feature pathway through all the layers and the orange arrows represent
possible skip connections between layers.

After going through the main model architecture, finalized outputs went through phases of max
pooling and dropout layers to produce the finalized phosphosite prediction scores (Figure 10). By
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identifying specific spectral associations that represented both possible amino acids and
phosphosites, the final outputs of the model were predicted fragment intensities and
corresponding amino acids that were phosphosites.

Figure 10: The max pooling from the main architecture went into multiple layers of alternating
dropout and dense network layers that removed and condensed extra nodes. The features went
through a final ReLU activation and sigmoid function to produce a single output prediction for
every identified amino acid.

The model also accounted for neutral losses and phosphorylation reversibility with these same
long-range associations and flexible feature identification. Instead of manually inputting features
for the identification of neutral losses or potential phosphosites without a phosphate attached to
the input spectra, the model developed its own patterns and features of recognition with data that
had known neutral losses. A portion of the code of the architecture is in TCN.py in Appendix A.

3.4. Training and Testing Schedule
I performed fourfold cross-validation to produce four independently trained models to ensure the
full model could adequately predict new data and combat overfitting, which is especially
important given the many unique characteristics of phosphosite localization. I trained the model
for 100 epochs with 9,000 steps each to follow the optimal gradient descent algorithm step.
Approximately 80% of spectra in PXD012174 were used for training and the rest for testing. The
remaining spectra from other databases were solely used for testing, especially to compare
against previous phosphosite localization tools. Training.py and Inference.py were portions of
the model that carried out the training and testing phases and are in Appendix A.

3.5. Evaluation Metrics
Given the novel nature of my model in terms of the combination of the dataset and model
structure utilized, it was important that it performed comparably or better to current phosphosite
localization methods that used amino acid sequence input. I intentionally chose specific spectral
datasets that had been used in a model that had identified phosphopeptide. Therefore, I would be
able to somewhat compare my model’s accuracy to that of a model performing a similar,
although arguably simpler, task. To compare to true phosphosite localization models, I used
typical machine learning accuracy metrics and compared such metrics to those calculated for the
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amino acid sequence models. The three evaluation metrics I implemented were a balanced
accuracy (Bacc) score, F1 score, and area under the receiver operating characteristic curve
(ROC-AUC). The F1 score and Bacc are shown in Equations 2 and 3 respectively where TP is a
true positive, TN is a true negative, FP is a false positive, and FN is a false negative. The
ROC-AUC curve is not a simple equation but rather a calculation of how well the model is at
identifying an amino acid as a phosphosite or not.

Equation 2

Equation 3

3.6. Prokaryotic Adaptations
After running the training and testing for my model on exclusively eukaryotic spectra for
maximum medical and pharmacological applications, prokaryotic spectra were investigated for a
better understanding of phosphorylation in a complete biological context. Given the additional
amino acids that can be phosphorylated in prokaryotes, feature selection would become more
difficult in a traditional model. Additionally, it was more difficult to identify publicly rigorous
MS/MS phosphoproteomes for prokaryotes, and there were even fewer machine learning or
computational methods that were implementing these datasets that I could compare my model to
in a meaningful way. Therefore, I decided to test my model on prokaryotic phosphosite
localization after eukaryotic spectra were tested to not interfere with my primary goal of
identifying pharmacologically relevant phosphosites.

I used the PRIDE archive to find relevant spectra datasets for four prokaryotic species: Klebsiella
pneumoniae, a bacterial pathogen with high antibiotic resistance, Escherichia coli,
Staphylococcus aureus, and Peptoclostridium difficile, which all are commonly studied model
organisms with important functions or threats to humans. The specific spectral datasets I used
were PXD041015 [49], PXD040658 [50] PXD026981 [51], and PXD029827 [52] respectively.

I first tested the new datasets with the model to see if the patterns developed in initial eukaryotic
phosphosite localization would be sufficient. I also created another version of the model where
the training data came exclusively from prokaryotic data. I took 20% of the spectra from each of
the four datasets to serve as the training dataset and then tested the model on the remaining
spectra.
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3.7. Improved Phosphosite Localization for Thale Cress and Liverwort
During the testing phase of my research, I observed that the localization scores for the datasets of
thale cress and liverwort were lower than that of human and mouse datasets. I determined this
was most likely due to the exclusive training on a human dataset, so I added training data from
all eukaryotic datasets to determine if more variation would prevent a preference toward human
phosphosites.

4. Results
4.1. Training Results (Initial Eukaryotic)
This section contains only the training results for the initial eukaryotic datasets. The training was
identical for the prokaryotic and more varied training dataset iterations of the model.
Furthermore, these iterations were not able to be easily compared to existing results of similar
models because of the limited model creation for prokaryotic organisms.

I implemented a standard cross-entropy loss function to monitor the training of all four
submodels that were created during cross-validation. The accuracies and losses across all models
maintained a stable and expected pattern demonstrating appropriate training despite the unique
modifications made to a typical TCN to accommodate spectra specifications. Figure 11 contains
the loss plots for each of the models.

Figure 11: The training and testing accuracies and losses plotted over the epochs for each
cross-validation submodel. The consistency of loss function between models demonstrates
appropriate training.

In order to assess the validity of my model in performing the localization task, I compared the
training results to another model, PhoStar [22], that identifies if a peptide, in general, has been
phosphorylated (not the specific phosphosite). Since I used the same training dataset as PhoStar,
I was able to compare the Bacc scores of my model and PhoStar. My model performed at an
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equal or better rate compared to PhoStar on a variety of subsections of the PXD012174 dataset
which is in Table 1.

Table 1: Selected spectra categories from the training dataset. The balanced accuracy scores of
my model represent the accuracy of phosphosite localization whereas the balanced accuracy of
PhoStar represents the accuracy of identifying a peptide as phosphorylated in general.

Name of Dataset in PXD012174 My Model (Bacc) PhoStar (Bacc)

Colon 0.85 0.64

Muscle 0.97 0.96

Primary-Melanoma 0.94 0.89

Brain 0.82 0.63

Primary-Liver 0.90 0.68

HeLa 0.94 0.89

Primary-Gastro 0.96 0.77

The results of training provided assurance that my approach was valid for the phosphosite
localization task.

4.2. Testing Results and Comparison with Sequence-Based Models
In testing, which included all eukaryotic organism datasets, my model achieved an average Bacc,
F-1 Score, and ROC-AUC of 91.84, 94.85, and 94.89 respectively. These results are in Table 2.
My model was able to produce effective accuracy across all organisms. Additionally, the datasets
used varying fragmentation and MS options which demonstrates the model was not reliant on
spectrometer-specific features.
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Table 2:My model’s testing validation for five additional datasets. The MS settings for the
datasets are included. Fragmentation options include collision-induced dissociation (CID) or
higher-energy C-Trap dissociation (HCD). Mass analyzer (MA) options are ion trap mass
spectrometer (IMTS) or Fourier-transform mass spectrometer (FTMS). The collision energy
(volts) is also listed. The average and standard deviation for each evaluation metric is included.

Dataset Fragmentation/MA/CE Bacc
(SD = 1.16)

F1 Score
(SD = 1.16)

ROC-AUC
(SD = 2.37)

PXD015050 (Mouse) CID/ITMS/35 93.23 95.02 96.45

JPST000685 (Liverwort) CID/ITMS/35, HCD/FTMS/45 89.45 91.53 92.83

PXD039200 (Human) HCD/FTMS/25 93.45 97.62 97.43

JPST000703 (Thale Cress) CID/ITMS/35 87.65 92.21 91.32

PXD037724 (Human) CID/ITMS/35 95.43 97.91 96.43

Average (SD) 91.84 94.85 94.89

While these results are generally high, there was a difference in the accuracy of the model in
predicting phosphosites in the common liverwort and thale cress datasets. These differences were
addressed in the iteration of the model with a more varied training dataset.

Comparison between my model and existing sequence models was somewhat difficult because
the input data used (spectra and small amino acid sequences respectively) were different. I
compared the F1 scores of my model and the scores of MusiteDeep and DeepPhos. Both of these
models used exclusively human sequencing data so I only used the accuracies of my model on
human datasets for a better comparison. The F1 score of my model across two human spectra
datasets was 97.76 compared to the average F1 score of 76.16 for MusiteDeep and 78.84 for
DeepPhos on 4 specific human kinase-based sequence datasets.

4.3. Neutral Loss and Reversible Phosphorylation
My model was able to accurately identify phosphosites given training and testing datasets with
known neutral losses and phosphosites that were not phosphorylated on the specific spectra. The
end-to-end nature of my model and its ability to make long-range associations most likely
enabled this capability. Without relying on specific input parameters to identify phosphosites
without the phosphate group bonded, the model was still able to develop and recognize
phosphosites that had undergone neutral loss or were not currently phosphorylated. Furthermore,
the model was able to make associations besides the typical 𝛽-/𝛾- ions manual feature typically
used. Figure 12 demonstrates the ability of my model to recognize phosphosites from fragment
intensities where neutral losses occurred on the peptide. The ability of the model to identify
phosphosites with neutral losses presents may be able to be modified to create a model that can
identify neutral losses in general.
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Figure 12: An individual run of the Primary-Gastro set of the PXD012174 dataset where the
neutral losses were already annotated by Ochoa et. al shown in green in MSviewer. The orange
intensity is an identified phosphosite made by my model. The identification of the phosphosite
with a neutral loss demonstrates neutral losses have less of an impact on the model.

4.4. Varied Eukaryotic Training and Prokaryotic Model
After modifying my original model with both a varied eukaryotic training dataset version and a
prokaryotic version, I recorded the accuracies. After shifting the training dataset to include
spectra from all eukaryotic organisms, I retested my model. The accuracies of the thale cress and
liverwort datasets did improve with no negative ramifications for the other eukaryotic organism
datasets across all evaluation metrics when compared to the initial model's accuracies (Table 3).
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Table 3: A table of the evaluation metrics for the initial model that had an exclusively human
training set and the adjusted training set model. All eukaryotic organisms had increased
accuracies except for humans which maintained the same scores.

Dataset Bacc
(Initial|Varied)
(SD = 1.16)

F1 Score
(Initial|Varied)
(SD = 1.16)

ROC-AUC
(Initial|Varied)
(SD = 2.37)

PXD015050 (Mouse) 93.23|94.45 95.02|96.02 96.45|96.89

JPST000685 (Liverwort) 89.45|94.45 91.53|94.35 92.83|96.02

PXD039200 (Human) 93.45|93.45 97.62|97.62 97.43|97.43

JPST000703 (Thale Cress) 87.65|94.32 92.21|95.68 91.32|96.45

PXD037724 (Human) 95.43|95.43 97.91|97.43 96.43|96.43

The prokaryotic version of the model achieved adequate accuracies for phosphosite localization
across all studied organisms. The accuracies, in general, are lower than that of eukaryotic
organisms (Table 4). This may be due to there being more potential amino acids that may be
phosphorylated which would necessitate more complicated pattern development and recognition.
The model provides an important initial step given that prokaryotic phosphosite localization is
even less rigorously studied than eukaryotic phosphosites.

Table 4: The evaluation metrics for the four prokaryotic organisms of the tested portion of the
modified model. The accuracy in general of the prokaryotic model is less than that of both the
initial and varied training eukaryotic models.

Dataset Bacc
(SD = 3.86)

F1 Score
(SD = 2.60)

ROC-AUC
(SD = 3.73)

PXD041015
(K. pneumoniae)

76.81 79.43 82.32

PXD040658
(E. coli)

68.35 74.32 73.55

PXD026981
(S. aureus)

72.83 76.41 77.22

PXD029827
(C. difficile)

78.32 81.02 82.43

Average 74.07 77.80 78.88
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5. Conclusion
My eukaryotic model with varied training achieved an average accuracy of 95% compared to the
accuracies (76 - 78%) of sequence-based models. This high accuracy enables my approach to be
used as a critical next step for the effective development of medical and pharmacological tools.
With the ability to accurately identify precise phosphosites from mass spectra, whole
phosphoproteome patterns can be identified more easily for an improved understanding of
general phosphorylation and specific biochemical pathways. Furthermore, by being able to
potentially treat patients with diseases associated with abnormal phosphosites, treatment can be
implemented at a more fundamental biological stage with the potential to reduce patient
discomfort by avoiding only treating symptoms. While the accuracy of the prokaryotic model
can be improved, it also provides a next step towards understanding phosphorylation at a full
biological level and potentially manipulating phosphorylation patterns of bacteria harmful to
humans for new antibiotics. Future steps for this research include improving upon the accuracy
of the prokaryotic model and using the model's ability to overcome neutral losses to potentially
create a new tool for efficiently identifying and understanding neutral losses in general.
Therefore, my model provides an efficient and accurate approach to the identification of exact
phosphosites from mass spectra that can be applied to a further understanding of phosphorylation
and the fight against both infectious and chronic diseases.
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7. Appendix A
Table 5: A sample of the raw mgf files inputted into my model. The first number listed is the
mass of the ion and the second number is the mass-to-charge ratio. The specific mass of the
inputted peptide (found from the first round of mass analysis)

BEGIN IONS
PEPMASS=850.7927819146404
101.07134173652747 8116.2739257813
102.47219044333973 3009.556640625
104.0532072896122 21715.228515625
106.18246495595973 3256.3903808594
109.76244474004274 3149.3000488281
110.07161830775757 16287.4169921875
113.25425150481418 2967.927734375
123.34886581572484 2987.9130859375
127.83984119933304 2890.8212890625
129.06591576786647 4147.0751953125
129.10233847584374 77638.609375
130.06854048746015 4469.2143554688
130.08631699135356 68444.5390625
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130.10549729555441 4272.7817382813
131.05059630254888 3106.2216796875
131.08152590932303 4287.8344726563
132.0767959273059 5171.1635742188
132.8649735999317 3571.4035644531
136.22572253599898 3115.4389648438
138.12791415261478 3706.7404785156
139.2822113054276 2892.2731933594
140.96900977486823 2849.830078125
143.0815743375597 5329.6591796875
143.11796654553027 4438.4443359375
145.3930524438169 3165.2937011719
146.6571519206785 3355.5895996094
147.11274892046282 108521.828125
148.11610604021692 4301.2348632813
148.79854028968288 3080.9194335938
155.11780127372006 9202.8505859375
155.72050830572428 3228.5920410156

Dataset.py: This file was the main driver code for separating raw mgf files from the PRIDE archive for
training into the two-vector representation.
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from pyteomics import mgf
import tensorflow as tf
import numpy as np
import os,glob
AUTOTUNE = tf.data.experimental.AUTOTUNE

MZ_MIN=100
MZ_MAX=1900
SEGMENT_SIZE=0.5
k = 50

def set_k(new_k):
global k
k = new_k
return k

def moduloparse(mz,intensity):
dtype=tf.float32
mz = tf.cast(mz,dtype)
intensity = tf.cast(intensity,dtype)
intensity = ion_current_normalize(intensity)

greater_mask = tf.math.greater(mz,tf.zeros_like(mz)+MZ_MIN)
# truncate
smaller_mask = tf.math.less(mz,tf.zeros_like(mz)+MZ_MAX)
# put into joint mask
mask = tf.logical_and(greater_mask,smaller_mask)
mask = tf.ensure_shape(mask,[None])
# apply mask
trunc_mz = tf.boolean_mask(mz,mask)
trunc_intensity = tf.boolean_mask(intensity,mask)

def segment_argmax(values,indices):
i = tf.unique(indices)[0]
zero,one=tf.zeros(1,dtype=dtype),tf.ones(1,dtype=dtype)
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return tf.vectorized_map(lambda x:
tf.argmax(values*tf.where(indices==x,zero,one)),i)

mz_mod = tf.math.floormod(trunc_mz,SEGMENT_SIZE)
mz_div =

tf.cast(tf.math.floordiv(trunc_mz-MZ_MIN,SEGMENT_SIZE),tf.int32)

uniq_indices, i = tf.unique(mz_div)
aggr_intensity = tf.math.segment_max(trunc_intensity,i)
argmax_indices = segment_argmax(trunc_intensity,i)
aggr_mz_mod = tf.gather(mz_mod,argmax_indices)

aggr_intensity = aggr_intensity#/tf.reduce_sum(intensity**2)
aggr_mz_mod = aggr_mz_mod/SEGMENT_SIZE

shape = tf.constant([int((MZ_MAX-MZ_MIN)/SEGMENT_SIZE)])
print(uniq_indices,aggr_intensity)
print(aggr_mz_mod,aggr_intensity)
aggr_mz_mod = tf.scatter_nd(tf.expand_dims(uniq_indices,1),

aggr_mz_mod, shape)
aggr_intensity =

tf.scatter_nd(tf.expand_dims(uniq_indices,1), aggr_intensity,
shape)

x = aggr_intensity
i = aggr_mz_mod

x = tf.cast(x,tf.float32)
i = tf.cast(i,tf.float32)
output = tf.stack([x,i],axis=1)
return output

def tf_preprocess_spectrum(mz,intensity):
#global MZ_MAX, SPECTRUM_RESOLUTION
SPECTRUM_RESOLUTION=2
n_spectrum = MZ_MAX * 10**SPECTRUM_RESOLUTION
mz = mz*10**SPECTRUM_RESOLUTION
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indices = tf.math.floor(mz)
indices = tf.cast(indices,tf.int64)

uniq_indices, i = tf.unique(indices)
# TODO: check optimum segmentation method (sum, max, mean)
uniq_values = tf.math.segment_max(intensity,i)
# make into mask to truncate between min<mz<max
# eliminate zeros (reduce sparsity)
lower_bound = 100 * 10**SPECTRUM_RESOLUTION
notzero_mask =

tf.math.greater(uniq_indices,tf.zeros_like(uniq_indices)+lower_bo
und)

# truncate :
trunc_mask =

tf.math.less(uniq_indices,tf.zeros_like(uniq_indices)+n_spectrum)
# put into joint mask:
mask = tf.logical_and(notzero_mask,trunc_mask)
# apply mask:
uniq_indices = tf.boolean_mask(uniq_indices,mask)
uniq_indices = uniq_indices - lower_bound
uniq_values = tf.boolean_mask(uniq_values,mask)

#### adapation because tf.SparseTensor only works with tuple
indices (stack zeros)

zeros = tf.zeros_like(uniq_indices)
uniq_indices_tuples = tf.stack([uniq_indices, zeros],axis =

1)
sparse = tf.SparseTensor(indices = uniq_indices_tuples,

values = uniq_values,dense_shape = [n_spectrum-lower_bound,1])
dense = tf.sparse.to_dense(sparse)
return dense

def tf_maxpool(dense,k):
shape = dense.shape
dense = tf.reshape(dense,[1,-1,1,1])
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n_spectrum = int(shape[0])
x, i =

tf.compat.v1.nn.max_pool_with_argmax(dense,[1,k,1,1],[1,k,1,1],pa
dding='SAME')

i0 = tf.constant(np.arange(0,n_spectrum,k))
i0 = tf.reshape(i0,[1,int(n_spectrum/k),1,1])
i = i-i0
x = tf.squeeze(x)
i = tf.squeeze(i)
return x,i

def tf_maxpool_with_argmax(dense,k):
dense = tf.reshape(dense,[-1,k])
x = tf.reduce_max(dense,axis=-1)
i = tf.math.argmax(dense,axis=-1)
return x,i

def ion_current_normalize(intensities):
total_sum = tf.reduce_sum(intensities**2)
normalized = intensities/total_sum
return normalized

def standardize(intensities,global_mean,global_var,noise=False):
log_intensity = tf.math.log(intensities)
standardized = (log_intensity-global_mean)/global_var
#return standardized
return tf.math.exp(standardized)

def parse(mz,intensity):
intensity = ion_current_normalize(intensity)
dense = tf_preprocess_spectrum(mz, intensity)
x,i = tf_maxpool_with_argmax(dense,k=k)
x = tf.cast(x,tf.float32)
i = tf.cast(i,tf.float32)
# turn into logits (logit (p) = log(p/(1-p)
i = i/tf.cast(k,tf.float32)
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output = tf.stack([x,i],axis=1)
return output

def
get_dataset(dataset='train',maximum_steps=10000,batch_size=16,mod
e='training',weights=None):

buffer_size=1*10**6 # in steps

phos_path=[glob.glob('%s/*.phos.mgf'%(x)) for x in dataset]
phos_path=[i for g in phos_path for i in g] # flatten
other_path=[glob.glob('%s/*.other.mgf'%(x)) for x in dataset]
other_path=[i for g in other_path for i in g] # flatten

if mode=='training' or mode=='test':
np.random.shuffle(phos_path)
np.random.shuffle(other_path)

def generator(label,reader):
def get_features(entry):

mz = entry['m/z array']
intensities = entry['intensity array']
return label,np.array(mz),np.array(intensities)

try:
entry = next(reader)
yield get_features(entry)

except:
return

with mgf.chain.from_iterable(phos_path) as phos_reader,
mgf.chain.from_iterable(other_path) as other_reader:

phos_ds = tf.data.Dataset.from_generator(lambda:
generator(label=1.0,reader=phos_reader),output_types=(tf.float32,
tf.float32,tf.float32),output_shapes=((),None,None))
other_ds = tf.data.Dataset.from_generator(lambda:
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generator(label=0.0,reader=other_reader),output_types=(tf.float32
,tf.float32,tf.float32),output_shapes=((),None,None))

if mode=='training':
drop_remainder=False
ds =

tf.compat.v1.data.experimental.sample_from_datasets([phos_ds,othe
r_ds],weights)

elif mode=='test':
drop_remainder=False
ds =

tf.compat.v1.data.experimental.sample_from_datasets([phos_ds,othe
r_ds],weights,seed=42)

elif mode=='inference':
drop_remainder=False
ds = other_ds.concatenate(phos_ds)

### MAP & BATCH-REPEAT ###
ds = ds.map(lambda label,mz,intensities:

tuple(moduloparse(label,mz,intensities)),num_parallel_calls=AUTOT
UNE)

if maximum_steps is None:
ds = ds.repeat()

else:
ds = ds.repeat(int(maximum_steps/2))

### SHUFFLE ###
if mode=='training':

ds =
ds.shuffle(buffer_size=buffer_size,reshuffle_each_iteration=False
)

elif mode=='test':
ds =

ds.shuffle(buffer_size=buffer_size,reshuffle_each_iteration=False
,seed=42)

### CACHE & EPOCH-REPEAT ###
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ds = ds.batch(batch_size,drop_remainder=drop_remainder)
return ds

def get_dataset_inference(mgf_file='example.mgf',batch_size=16):

def generator(label,reader):
def get_features(entry):

mz = entry['m/z array']
intensities = entry['intensity array']
scans = int(entry['params']['scans'])
return scans,np.array(mz),np.array(intensities)

try:
entry = next(reader)
yield get_features(entry)

except:
return

with mgf.chain.from_iterable([mgf_file]) as mgf_reader:
ds = tf.data.Dataset.from_generator(lambda:

generator(label=None,reader=mgf_reader),output_types=(tf.float32,
tf.float32,tf.float32),output_shapes=((),None,None))

### MAP & BATCH-REPEAT ###
ds = ds.map(lambda label,mz,intensities:

tuple(parse(label,mz,intensities)),num_parallel_calls=AUTOTUNE)
ds = ds.repeat()

ds = ds.batch(batch_size,drop_remainder=False)
return ds

if __name__ == "__main__":
for x,i in

get_dataset(dataset=['training'],maximum_steps=2,batch_size=1,mod
e='training'):

print(x)
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TCN.py: This file includes the Temporal Dilated Convolutional Neural Network Architecture that was
created for the model.

import tensorflow as tf

#establish temporal block class
class TemporalBlock(tf.keras.Model):

def
__init__(self,filters,kernel_size,padding,dilation_rate,dropout_r
ate=0.0):

super(TemporalBlock,self).__init__()
init=tf.initializers.he_normal()
#first convolution with assigned dilation rate
self.conv1 =

tf.keras.layers.Conv1D(filters=filters,kernel_size=kernel_size,pa
dding=padding,dilation_rate=dilation_rate,kernel_initializer=init
)

#ReLU activation
self.ac1 = tf.keras.layers.Activation('relu')
#Dropout Layer
self.drop1 = tf.keras.layers.Dropout(dropout_rate)

self.conv2 =
tf.keras.layers.Conv1D(filters=filters,kernel_size=kernel_size,pa
dding=padding,dilation_rate=dilation_rate,kernel_initializer=init
)

self.ac2 = tf.keras.layers.Activation('relu')
self.drop2 = tf.keras.layers.Dropout(dropout_rate)

self.conv1x1 =
tf.keras.layers.Conv1D(filters=filters,kernel_size=1,padding='sam
e',kernel_initializer=init)

self.ac1x1 = tf.keras.layers.Activation('relu')

def call(self,x,training):
prev_x = x
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x=self.conv1(x)
x=self.ac1(x)
x=self.drop1(x)

x=self.conv2(x)
x=self.ac2(x)
x=self.drop2(x)

prev_x = self.conv1x1(prev_x)
return self.ac1x1(prev_x + x)

#implement temporal block class into full TCN architecture
class TCN(tf.keras.Model):

def
__init__(self,num_channels,kernel_size=2,padding='causal',dropout
_rate=0.0):

super(TCN,self).__init__()
assert isinstance(num_channels, list)

model = tf.keras.Sequential()

num_levels = len(num_channels)
for i in range(num_levels):

dilation_rate = 2 ** i
model.add(TemporalBlock(num_channels[i], kernel_size,

padding=padding,
dilation_rate=dilation_rate, dropout_rate=dropout_rate))

self.network = model

def call(self, x, training):
return self.network(x, training=training)
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Training.py: This file ran the initial training of the complete model on the chosen training dataset.

import tensorflow as tf
import numpy as np
import sys,os
#import simplejson
AUTOTUNE = tf.data.experimental.AUTOTUNE
tf.compat.v1.disable_eager_execution()
from dataset import get_dataset
from network import network

train = True
saving = False

def binary_accuracy(y_true, y_pred):
return tf.reduce_mean(tf.cast(tf.math.equal(y_true,

tf.math.round(y_pred)),tf.float32))

callbacks = []

ch = 64
net =
network([ch,ch,ch,ch,ch,ch,ch,ch,ch,ch,ch,ch,ch],kernel_size=2,pa
dding='same',dropout=.2)

inp = tf.keras.layers.Input((3600,2))
sigm = net(inp)
model = tf.keras.Model(inputs=and,outputs=sign)
bce=tf.keras.losses.BinaryCrossentropy(from_logits=False)

learning_rate=5.0e-6
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=le
arning_rate,clipnorm=1.0),loss=bce,metrics=['binary_accuracy','Re
call','Precision'])

batch_size=64
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steps=1
maximum_steps=batch_size*steps

train_data =
get_dataset(dataset=['./training'],maximum_steps=maximum_steps,ba
tch_size=batch_size,mode='training').prefetch(buffer_size=AUTOTUN
E)

if train:

model.fit(train_data,steps_per_epoch=1,epochs=1,callbacks=callbac
ks)

if saving:
model.save_weights('model_weights.hdf5')
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Inference.py: Testing file that took testing data and outputted prediction scores for phosphosite locations.

import tensorflow as tf
import numpy as np
import sys,os
import argparse

parser = argparse.ArgumentParser(description='Read spectra from
an mgf-file and output a determined amino acid and phosphosite
prediction score.')
parser.add_argument('model_weights', type=str, help='trained
model weights')
parser.add_argument('mgf_file', type=str, help='input filename:
mgf-file containing ms/ms spectra.')
parser.add_argument('out_file', type=str, help='output filename')
parser.add_argument('--tsv', dest='tsv', action='store_const',

const=True, default=False, help='write a
tsv-file')

args = parser.parse_args()

AUTOTUNE = tf.data.experimental.AUTOTUNE
tf.compat.v1.disable_eager_execution()
from dataset import get_dataset_inference
from network import network

ch = 64
net =
network([ch,ch,ch,ch,ch,ch,ch,ch,ch,ch,ch,ch,ch],kernel_size=2,pa
dding='same',dropout=.2)
inp = tf.keras.layers.Input((3600,2))
sigm = net(inp)
model = tf.keras.Model(inputs=inp,outputs=sigm)
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.
losses.BinaryCrossentropy(from_logits=False))
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batch_size=64

model.load_weights(args.model_weights)

mgf_file = args.mgf_file

ds =
get_dataset_inference(mgf_file=mgf_file,batch_size=batch_size)pri
nt('predicting: ',mgf_file)

some_big_number=10**5
pred_score = model.predict(ds,steps=some_big_number)
score = np.atleast_1d(np.squeeze(pred_score))
pred = np.round(score)

print('Writing results to file: %s'%args.out_file)

if not args.tsv:
np.savetxt(args.out_file,score)

if args.tsv:
from pyteomics import mgf
import pandas as pd
def get_scans(entry):

title = str(entry['params']['title'])
scans = int(entry['params']['scans'])
return title,scans

title_,scan_ = zip(*list(map(get_scans,mgf.read(mgf_file))))

###
df =

pd.DataFrame({'title':title_,'scan':scan_,'score':score,'pred':pr
ed})

df.to_csv(args.out_file,sep='\t')

print('Done.')
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